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b Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Cientı́ficas, Spain

a r t i c l e i n f o

Article history:

Received 31 January 2007

Received in revised form

20 November 2007

Accepted 27 November 2007

Published on line 14 January 2008

a b s t r a c t

This paper describes a procedure for evaluating the desertification risk in threatened areas.

The procedure is based on an eight-equation dynamic model of a generic human–resource

system that can be applied to different desertification syndromes. For each application,

interest focuses on finding all the possible long-term final states of the system and on defin-

ing the conditions that mark out sustainability and long-term desertification by means of

unambiguous specific parameter relations. The procedure is applied to three typified cases
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in Spain: (A) rainfed crops in areas with high soil erosion risk; (B) irrigated intensive agri-

cultural systems; and (C) commercial rangelands. Results show that, in case A, high profit

scenarios are responsible for the final extension of desertification but do not determine the

specific threshold between sustainability and desertification. They do, however, in cases B

and C.

three worldwide landmark projects that reveal a historical
1. Introduction

Dealing with desertification in threatened areas requires some
assessment capacity to provide guidelines for implement-
ing successful mitigation and monitoring programmes. Such
capacity includes identifying symptoms and driving forces
and evaluating risk. The approaches to desertification assess-
ment evolved with the desertification concept itself. This was
established after the big drought that the Sahel experienced
in the 1970s. Desertification was, at that time, associated with
the soil’s loss of capacity to sustain yield and population. Cum-
bersome debates took place to ascertain whether humans or
climate were causing that process until it was understood that
the effect was synergetic.

This conceptual upgrading is expressed in the UNCCD
(1998) definition of desertification as ‘the land degradation in arid

and semi-arid and dry-sub-humid areas resulting from various fac-
tors, including climatic variations and human activities’. In spite of
its generality and simplicity, this definition has the advantage

∗ Corresponding author.
0304-3800/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolmodel.2007.11.017
© 2007 Elsevier B.V. All rights reserved.

of providing a benchmark for designing assessment and diag-
nostic methods. The outcome or symptom of desertification
is land degradation, and its driving forces are climatic vari-
ations and human activities. Furthermore, land degradation
is defined by UNCCD (1998) as the ‘loss of land’s biological and
economic productivity and complexity’. This is a holistic defini-
tion that looks at the bulk impact rather than at the particular
causes, like soil erosion, salinization, etc.

Later on a more integrated view of desertification as a
sustainability loss of the human-renewable resource systems
emerged (Puigdefabregas, 1995). This view explicitly accom-
modated the various linkages between socio-economic and
biophysical factors in appropriate spatial and temporal frames
(Stafford-Smith and Reynolds, 2002).

The above conceptual evolution can be tracked across
trend of increasing complexity in desertification assess-
ment approaches (GLASOD, 1990; LADA, 2002; Millennium
Assessment, 2005). They upgrade from ‘soil’ to ‘land’ degra-

dx.doi.org/10.1016/j.ecolmodel.2007.11.017


g 2 1

d
d
i
(

m
s
o
T
b
e
a
c
t
o
i
a
t
o
c
t
t

i
a
R
o
o
2
o
t
a
m
a

t
t
d
s
a
i
f

i
t
1
o
v
b
v
c
d

t
i
a
j
l
c
n

e c o l o g i c a l m o d e l l i n

ation, from only considering effects to explicitly including
rivers (climate variability and human activity) and to becom-

ng more concerned with global interactions of desertification
climate change, biodiversity).

Underlying these more complex and integrated assess-
ent concepts is the impact of disturbances on the

ustainability of threatened human–resource systems. Most
f the reported desertification cases share a common feature.
hey witnessed disturbances that had not been experienced
efore in their history (Puigdefabregas, 1998). Some possible
xamples are strong changes in climate, market conditions
nd agricultural policies, demographic booms or technologi-
al revolutions. The overall effect of these disturbances is to
ake the threatened systems beyond their resilience thresh-
lds. Sustainability in human-renewable resource systems

ncludes at least economic and ecological thresholds (Pickup
nd Stafford-Smith, 1993). The former mostly occur earlier
han the latter and consequently human populations leave
ff their pressure on renewable resources. In desertification
ases, however, people cannot get out and are forced to con-
inue exploiting resources beyond their ecological resilience
hreshold until land degradation is ‘irreversible’.

Land degradation is a ‘holistic’ concept and has often been
nadequately assessed by adding up several soil features, such
s erosion, compaction, salinization, nutrient depletion, etc.
ecently new approaches are being developed. They are based
n ecosystem functions such as productivity (Prince, 2002)
r efficiency in the use of water (Boer and Puigdefabregas,
005). The advantage of these methods is that they are based
n attributes that can be directly associated with the ecosys-
em’s maturity level. However, they fail to include thresholds
nd integrate human activities. While they do work well for
onitoring designs, they are not entirely suitable for risk

ssessment applications.
Lately it has been suggested that the concept of deser-

ification syndrome is the characteristic sets of symptoms
hat are associated with specific series of disturbances in
esertification threatened areas (Geist, 2005). Desertification
yndromes provide a useful frame for integrating the human
nd biophysical components of household populations or sim-
lar management units. They also constitute a qualitative shift
rom desertification status assessment to risk evaluation.

Desertification risk analysis has been approached by apply-
ng system dynamics techniques to various developments of
he classical predator–prey ecological models (Puigdefabregas,
995; Regev et al., 1998). These attempts provide relevant the-
retical insights. However, they are not yet applicable to a
ariety of real cases because of the lack of flexibility forced
y the assumption that there are no relations between state
ariables other than consumption and because of they do not
onsider the soil subsystem, which plays an overriding role in
esertification processes.

This contribution explores an alternative simplified option
o desertification risk analysis. It also relies on system dynam-
cs models, but they are more flexible than those mentioned
bove. Also, it rules out detailed prediction of system tra-

ectories. Instead interest focuses on finding all the possible
ong-term alternative states of human–resource systems if
limatic and economic scenarios are kept constant in their
ormal or average values. In spite of the absence of exoge-
3 ( 2 0 0 8 ) 180–190 181

nous fluctuations or disturbances, final states of what could be
called ‘structurally driven’ desertification can be predicted, as
can the conditions that lead to these states. This is because the
system’s fate can be expressed in terms of explicit parameter
relations. Such conditions are actually unambiguous indica-
tors and thresholds in the risk analysis procedure.

The procedure is flexible and robust enough to be applied
to a wide range of desertification syndromes. Results would
be more reliable if such applications were to employ widely
accepted partial models (e.g., the logistic growth equation
of natural populations, profit maximization conditions, the
exponential drop in erosion rates with growing vegetation
cover), as is the case in the three applications described in this
work. Of course, although the use of the model we make here
is non-time explicit, it could also be used to analyse transient
behaviours under different time-based scenarios.

The proposed approach relies upon a common set of eight
dynamic equations, which is described in Section 2. Sections
3–5 apply the generic model to three areas of Spain typified
as threatened by desertification. Equilibrium conditions are
analysed and the thresholds marking out sustainability and
structural long-term desertification are defined for each of the
three applications. Results are discussed in Section 6, which
concludes this paper.

2. A theoretical dynamic human–resource
system

The following generic eight-equation dynamic model is pro-
posed to evaluate structural long-term desertification risk in
threatened areas (capital letters are employed to name vari-
ables and small letters to denote parameters throughout the
paper).

• Eq. (1) Number of consumption units

dU

dt
= g(·)+ UD − U

uat
(2.1)

U = consumption units; g(·) = natural growth of U; UD = target
consumption units; uat = adjustment time of consumption
units.
The consumption units U could be, in the simplest case,
some human population but also, in more complex cases,
entities like hectares, enterprises or livestock herds. The
first term in 2.1, the natural growth rate of U, would only
be required for the case of modelling a human (i.e. a natu-
ral) population. This natural growth could be influenced by
the current stocks of both the natural resource R and the
limiting factor S which are defined bellow. The second term
in 2.1, the migratory rate of U, would be useful in any case.
When UD > U this term represents the rate of consumption
units incoming to the system. When UD < U the term stands
for the rate of consumption units leaving off the system.

A partial adjustment scheme is assumed for the migratory
rate, where uat is the average adjustment time. This could
differ depending on whether it refers to consumption units
entering or leaving the system.
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• Eq. (2) Target consumption units

UD = umx FO(PU) (2.2)

UD = target consumption units; umx = maximum number
of consumption units; PU = profit per consumption unit;
O = opportunity cost in a consumption unit (random vari-
able); FO(·) = cumulative distribution function of O [i.e.
FO(PU) = prob(O ≤ PU)].
On the one hand, we assume that the maximum number of
consumption units is constrained to umx because of factors
that are exogenous to the model (i.e. geographic or bio-
physical limitations). On the other, only those units where
profit PU is greater than opportunity cost O should go into
the modelled system. The opportunity cost is randomly dis-
tributed across the units. This explains why its cumulative
distribution function FO(·) is used in Eq. (2.2).

• Eq. (3) Production function

QU = q(KU, RU, S) (2.3)

QU = production per consumption unit; q(·) = production
function; KU = capital demand per consumption unit;
RU = natural resource demand per consumption unit;
S = limiting factor.
The average production per unit QU depends on the quan-
tities of capital KU and natural resource RU employed.
However, the existence or accumulation of some limiting
factor S could negatively affect production.

• Eq. (4) Profit

PU = prq QU − c(KU, RU) − m(S) − fcu (2.4)

PU = profit per consumption unit; prq = price of produc-
tion; QU = production per consumption unit; c(·) = variable
cost function; KU = capital demand per consumption unit;
RU = natural resource demand per consumption unit;
m(·) = cost of corrective measures of S; S = limiting factor;
fcu = fixed cost per consumption unit.
Average returns per unit are the result of multiplying the
product price prq by the average quantity produced QU

(subsidies are ignored although could easily be included).
Average profits per unit PU are obtained after subtracting
variable costs c(KU, RU), the cost of measures for correcting
the effects of the limiting factor m(S) and the fixed cost fcu
from returns.

• Eq. (5) Capital demand per consumption unit

dKU

dt
= KD

U − KU

alk
=

[(
prq dQU/dKU

GK

)srk

− 1

]
KU

alk
(2.5)

KU = capital demand per consumption unit; KD
U = target cap-

ital demand per consumption unit; alk = average life of
capital; prq = price of production; QU = production per con-
sumption unit; GK = marginal cost of capital; srk = sensitivity
to relative return to capital.

The first expression for the rate of variation of KU is a quite
generalized one which seeks to be useful for a wide range
of desertification syndromes. The last expression in 2.5 is
a special particularization of the first one for those cases
2 1 3 ( 2 0 0 8 ) 180–190

where the consumption units operate within a market’s
economy. Here we assume that each of the consumption
units seeks its own short-term profit maximization, i.e.
there is no kind of long-term oriented regulation. Profit
maximization is achieved when the value of the marginal
product of capital, prq dQU/dKU, is equated with its marginal
cost, GK. The consumption units follow a hill-climbing
heuristic for such optimization: target demand for capital is
anchored to the current demand and varies in the economi-
cally expected way from such demand under disequilibrium
situations (Sterman, 2000). For example, if the value of the
marginal product of capital were greater than its marginal
cost, the target demand KD

U would turn out to be greater than
the current demand KU. The sensitivity of KD

U to changes in
the relative return on capital is quantified by the constant
srk. Finally, we assume that the average life of capital alk
is the average adjustment time for the partial adjustment
scheme established between the current and target values
for capital demand.

• Eq. (6) Natural resource demand per consumption unit

dRU

dt
= RD

U − RU

rat
=

[(
prq dQU/dRU

GR

)srr

− 1

]
RU

rat
(2.6)

RU = natural resource demand per consumption unit;
RD

U = target natural resource demand per consumption
unit; rat = adjustment time of natural resource demand;
prq = price of production; QU = production per consumption
unit; GR = marginal cost of natural resource; srr = sensitivity
to relative return on natural resource.
The assumptions of this equation are similar to the assump-
tions for Eq. (5). Short-term maximization means here that
the natural resource is exploited competitively, i.e. with no
agreement concerning such exploitation between the con-
sumption units (Ibáñez et al., 2004).

• Eq. (7) Stock of natural resource

dR

dt
= r(R, S) − URU (2.7)

R = stock of natural resource; r(·) = net renewal rate of
R; S = limiting factor; U = consumption units; RU = natural
resource demand per consumption unit.
The stock of natural resource has a net renewal rate r(R, S)
which could be negatively affected by the limiting factor S.
The rate of depletion is equal to the total demand for the
resource, i.e. the product of U times RU.

• Eq. (8) Stock of limiting factor

dS

dt
= s(S, U, KU, R) (2.8)

S = limiting factor; s(·) = net renewal rate of S;
U = consumption units; KU = capital demand per con-
sumption unit; R = stock of natural resource.

The net stocking rate of the limiting factor could, in
principle, be related to its current stock, the number of con-
sumption units, the quantity of capital employed in each
unit or the stock of natural resource.



g 2 1

t
F
q
c
b
t
t
b
c
s
t
d

t
t
(
c
a
c

3
s

I
s
d
t
t
2
s
s
o
m
c
t
E
c
b

3

T
r
i

c

E
o
l
s

U

e c o l o g i c a l m o d e l l i n

The eight equations explained above form the fundamen-
al framework of a dynamic model for studying desertification.
or such a framework to be applied, the functions g(·), FO(·),
(·), c(·), m(·), r(·) and s(·) will obviously need to be given spe-
ific forms and the resulting set of parameters will have to
e calibrated. The resulting model could be used to show
he expected trajectories of the variables given both some
ime-based parameter scenarios and the assumed rational
ehaviour of the consumption units. Additionally, the model
ould be used to analyse its long-term equilibrium conditions,
omething that can actually be done before parameter estima-
ion. This is the use that we explore in this paper in order to
efine explicit structural desertification thresholds.

Specifically, we apply the theoretical system to three deser-
ification syndromes in Spain. These syndromes have been
ypified by the National Desertification Action Programme
Ministry for the Environment, 2003). They are: (A) rainfed
rops in areas with high soil erosion risk; (B) irrigated intensive
gricultural systems; and (C) commercial rangelands. These
ases have been sorted in order of increasing complexity.

. Case A: rainfed crops in areas with high
oil erosion risk

n Spain, woody crops (olives, fruit, grapevines) “are frequently
ited on highly or medium sloping lands, with a low plantation
ensity. These circumstances, plus frequent agricultural work
o remove the competitive grass cover, diminish soil’s protec-
ion against erosion” (Ministry for the Environment, 2003, p.
6). Common Agricultural Policy (CAP) incentives could pos-
ibly influence the expansion of woody crops into steeply
loping areas. Also “sizeable erosion-induced losses of soil
ccur in areas of rainfed annual crops on slopes ranging from
oderate to high with no soil conservation measures. The

ereal/fallow rotation system leaves the soil stripped of vege-
ation in autumn when rainfall is heaviest” (Ministry for the
nvironment, 2003, p. 27). The traditional measures for soil
onservation, which call for a significant labour force, have
ecome unprofitable for farmers.

.1. Model equations

he following likely assumptions are adopted in order to rep-
esent the typology of case A by means of the model described
n Section 2:

Eq. (1A)—Be U in Eq. (2.1) the number of hectares, a type of
onsumption units for which g(·) = 0. In this way:

dU

dt
= UD − U

uat
(3.1)

q. (2A)—It is assumed that the probability distribution of the
pportunity cost across the hectares is exponential (i.e. the

ikelihood of an opportunity cost decrease exponentially as

oon as its value increases). In this way, Eq. (2.2) becomes:

D = umx

{
1 − exp

[
−max(0, PU)

aoc

]}
(3.2)
3 ( 2 0 0 8 ) 180–190 183

where aoc is the average opportunity cost. The max(·) function
assures that the minimum number of target hectares is zero.

Eq. (3A)—Agricultural production in each hectare is nega-
tively affected by significant losses of soil. Without such losses,
the average production is constant and optimum in an eco-
nomic sense. This means that the demand for capital is at
the steady state value needed to maximize profits per hectare.
Suitability of natural resources (i.e. rainfall) is assured. Thus,
the average production per hectare is given by

QU = qop

{
1 − exp

[
−max(0, S − smn)

qsf

]}
(3.3)

qop is the average profit-maximizing production per hectare, S
is the volume of soil (pore space not included), smn is the min-
imum volume of soil needed to provide the necessary water
storage capacity to sustain plant growth, and qsf is a form
parameter. Thus, in case A, the limiting factor is soil: a moder-
ate decrease in soil volume implies losses of crop productivity;
a high decrease in soil, such that S ≤ smn, makes production
unfeasible.

Eq. (4A)—Given the assumed constancy of the average
demand for capital and that there is no marketable demand
for natural resources, the average variable cost function c(·) is
constant and can be taken as included in the average fixed
cost, fcu. It is also assumed that there is no measure to con-
trol erosion. Taking all this into account, profit per hectare is
given by

PU = prq QU − fcu (3.4)

Eqs. (5A)–(7A)—Clearly, Eqs. (2.5)–(2.7) are not needed under
the assumptions explained so far.

Eq. (8A)—Soil characteristics are similar across the whole
studied area. The volume of soil per hectare has the following
rate of variation:

dS

dt
= bwr − lch − bse exp

[−QU

sef

]
(3.5)

The first term, bwr, is the weathering rate of the bedrock,
and the second, lch, corresponds to the leaching rate. The
difference bwr − lch can be assumed constant under invari-
able weather conditions, a constant slope and the same kind
of soil. The third term of Eq. (3.5) is the interrill erosion
rate. Again, given the constancy in time and/or space of soil
type, crop and agricultural work, slope gradient and rainfall
amount/intensity, the erosion rate is only a function of the
vegetation cover, which is merely assumed to be proportional
to QU. Erosion drops exponentially as the crop grows, follow-
ing Elwell and Stocking (1976); the constant sef sets the form
of this exponential relation and the bse parameter is the bare
soil erosion rate (QU = 0). But erosion does not necessarily dis-
appear when production is at its economically optimum value
QU = qop. It is clear that this value does not assure enough
vegetal cover across the whole year for annual crops and

for the whole cultivated area for woody crops. The erosion
rate when production is optimal is emn = bse exp[−qop/sef].
Whether this minimum erosion rate will be positive or null
depends on the values of qop and sef.
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Fig. 1 – Soil equilibrium in case A when

emn < bwr − lch < bse.

To simplify the current application, we deliberately ignore
erosion caused directly by agricultural work, which would be
linked to KU, soil transfers between hectares and soil organic
matter dynamics.

3.2. Stability conditions—indicators of desertification
risk

The volume of soil is in equilibrium when dS/dt = 0, which
means that

bwr − lch = bse exp
[−QU

sef

]
(3.6)

Fig. 1 shows the generic form of both sides of this equation
after substituting QU by Eq. (3.3). In the illustrated case (which
is just one of the possibilities, as explained below), the equi-
librium volume of soil is1 SS. The bwr − lch value represents
the acceptable erosion rate (Kirkby, 1980).

This case admits three equilibrium conditions:

(A.1) bwr − lch > bse. Under this unlikely condition there is no
risk of desertification in the modelled system, because
the soil grows endlessly and never becomes a limiting
factor for crop productivity. In this way, both agricultural
production per hectare and the number of cultivated
hectares will, in the long run, reach steady states.

(A.2) emn < bwr − lch < bse. This is the case illustrated in
Fig. 1. The equilibrium value SS represents the thresh-
old between the catastrophic lost of the whole volume
of soil and its sustainable endless growth. Under the cur-
rent conditions, the system is dependent on the initial
values: agricultural production will be sustainable only
if the initial volume of soil in a hectare is greater than SS.
The mathematical expression of this measure cannot be
solved, but it can be calculated by numerical iteration.

(A.3) bwr − lch < emn. Given that the minimum erosion rate of
the cultivated crops is greater than the net soil formation
rate for every volume of soil, the long-term destiny of the
system in this case is desertification.
1 From now on, all superindexes name the respective state vari-
able of an isocline. For example, RS is the isocline of S, which is
eventually solved for R.
2 1 3 ( 2 0 0 8 ) 180–190

4. Case B: irrigated intensive agricultural
systems

This case generically refers to a number of areas in Spain char-
acterized by an increasing colonization of irrigated crops. The
relative low cost of water and the high demand for produc-
tion leads to considerable profitability, which encourages the
increase of the irrigated surface. The environmental conse-
quences are aquifer overexploitation, sea water intrusion in
coastal regions, soil degradation and salinization, river flow
reductions and loss of wetlands (Ministry for the Environment,
2003, pp. 30–31).

4.1. Model equations

Another set of assumptions can be used to apply the model
proposed in Section 2 to represent an ideal but likely instance
compatible with the description given above.

Eq. (1B)—In Eq. (2.1) U is the number of irrigated hectares.
In this way, Eq. (3.1) is also valid here.

Eq. (2B)—As in case A, an exponential probability distribu-
tion is assumed for the opportunity cost. In this way, Eq. (2.2)
turns out to be equal to (3.2).

Eq. (3B)—The per hectare production function is

QU = tch

[
RU − 0.5

(
R2

U

eqx

)]
(4.1)

where RU here is the average demand for water per
hectare, tch is a technology-related parameter and eqx is
the endowment of water allowing maximum production (i.e.
Qmax

U = 0.5 tch eqx). Note that endowments RU greater than eqx
imply decreasing yields per hectare. To simplify this applica-
tion, it is assumed that the capital per hectare is constant and
that there is no other production limiting factor.

Eq. (4B)—Profit per hectare is given by

PU = prq QU − CRRU − fcu (4.2)

CR is the marginal cost of water. Its value increases as soon as
the total stock of water for irrigation R decreases. It is assumed
that this stock of water is exclusively a groundwater aquifer.
The relation between CR and the piezometric elevation Z can
be assumed to be linear:

CR = crm + ucz Z (4.3)

If, additionally, it is assumed that neither the area of the
aquifer, aqa, nor its storativity, str, varies with Z, then

Z = rmx − R

aqa str
(4.4)

where rmx is the maximum aquifer capacity, which corre-

sponds with Z = 0. Then, after substituting Eq. (4.4) in Eq. (4.3):

CR = crm + ucz(rmx − R)
aqa str

(4.5)
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Eq. (5B)—Given that the average capital demand is assumed
o be constant, Eq. (2.5) is not needed here.

Eq. (6B)—It is easy to check that Eq. (2.6) now results in:

dRU

dt
=

[(
prq tch[1 − (RU/eqx)]

CR

)ssr

− 1

]
RU

rat
(4.6)

Consider that farmers have no other water supply except
or the aquifer.

Eq. (7B)—The rate of variation of the stock of water R is

dR

dt
= rec − dp1

(
R

rmx

)dp2
− (1 − rfc)URU (4.7)

In this equation, rec is the average natural recharge of R,
hich is assumed to be constant. The second term is the dis-

harge rate, which would correspond exclusively to springs
Ibáñez et al., 2004). In such a term, dp1 and dp2 are con-
tants and rmx is the maximum aquifer capacity, as explained
efore. Finally, groundwater would not be used for anything
ut irrigation, where rfc is the return flow coefficient.

Note that, without pumps (RU = 0), the aquifer’s natural
quilibrium is achieved when rec = dp1 (R/rmx)dp2, that is to
ay:

= req = rmx
(

rec
dp1

)1/dp2
(4.8)

Additionally it is assumed that rec ≤ dp1, which means that
eq ≤ rmx. This circumvents having to define the discharge
unction for the completely full aquifer (for this formulation,
ee Ibáñez et al., 2004).

Eq. (8B)—To simplify the application showed here, it has
een assumed that no limiting factor exists. After reading the

nitial description of case B, it is clear that the salt transported
y water and accumulated in the soil could have played such
role.

.2. Stability conditions—indicators of desertification
isk

he isocline of the per hectare demand for water (dRU/dt = 0)
s

RU
U (R) = eqx

(
1 − CR(R)

prq tch

)
(4.9)

e will consider here only the case in which technical and
conomic conditions are good enough to assure a positive
emand for even the last drop of groundwater. In this case,

R(R) should be less than prq tch for any value of the stock R.
his is assured if:

R(0) = crm +
[

ucz rmx
aqa str

]
< prq tch (4.10)

(0) is the maximum marginal cost of water obtained after
R

aking R = 0 in Eq. (4.5). Failure to consider condition (4.10)
mplies that there is some positive value of R at which the equi-
ibrium demand for water disappears. This would mean that
here is some technical or economic protection for groundwa-
hectares equilibriums for case B (each set of vectors of
change is only valid for the nearest equilibrium).

ter and thereby no risk of it being overexploited.
The isocline of the stock R (dR/dt = 0) can be expressed as

UR(R, RU) = rec − dp1(R/rmx)dp2

(1 − rfc)RU
(4.11)

This equation is always defined after assuming that RU > 0
for any R.

Finally, the isocline of the consumption units (dU/dt = 0) is

UU(R, RU) = UD = umx

{
1 − exp

[
−max(0, PU(R, RU))

aoc

]}

(4.12)

The profit per hectare PU, which depends on R and RU, is
expressed by Eq. (4.2).

Assuming that the adjustment time for water demand is
quite a lot minor than the adjustment times for both ground-
water stock and irrigated hectares, we adopt the quasi-steady
state assumption (Edelstein-Keshet, 1988) that allows RU to be
represented by its equilibrium value. Substituting the equilib-
rium condition (4.9) in (4.11) and (4.12) results in two functions
of R: UR(R) and UU(R). Fig. 2 shows some examples of their
generic form. Note that improving the technical and/or eco-
nomic conditions of groundwater exploitation (for example,
by increasing prq and/or tch) imply moving the curve UU(R)
towards the upper left-hand corner. Thus, UU

2 (R) in the illus-
trated example results from a better technical and economic
parametric scenario than UU

1 (R).
The outlined model of a competitively exploited aquifer

can be seen as a special case of a predator–prey system,
where, obviously, groundwater resembles the prey and the
consumption units (i.e. irrigated hectares) are predators. It
can be demonstrated (Ibáñez et al., 2004) that any intersec-
tion of UR(R) and UU(R) constitutes a steady state of the system
given that they always satisfies the required conditions first
established by Rosenzweig and MacArthur (1963).

Before setting all the possible long-term alternative states
of the system a number of measures, only depending on

parameters, need to be defined. Some have complex math-
ematical expressions, but all of them can be calculated by
numerical iterations. These measures are: (i) the values UR(0)
and UU(0) obtained after making R = 0 in UR(R) and UU(R),
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respectively (Fig. 2); (ii) the natural equilibrium of the aquifer
req given in Eq. (4.8), which is the intersection point of UR(R)
and the U = 0 axis; and (iii) the stock of groundwater rp0 under
which the profit PU is null, which matches the intersection
point of UU(R) and the U = 0 axis (Fig. 2). Note that this measure
is equal to zero for curves of the type UU

2 (R).
In this way, the final states of the system for case B (after

assuming condition (4.10)) are defined by

(B.1) rp0 ≥ req. Under this unlikely condition it will not be
profitable to start up aquifer exploitation for agricultural
irrigation. Therefore, the stock of groundwater will hold
up on its natural equilibrium req.

(B.2) 0 < rp0 < req. This condition corresponds to a curve of the
type UU

1 (R) and necessarily to a non-null steady state of
both the consumption units and the stock of groundwa-
ter (point A, Fig. 2).

(B.3) rp0 = 0 and UR(0) > UU(0). The first of these conditions
assures a positive profit even for the last drop of ground-
water. However, given that UR(0) > UU(0) is occurring
simultaneously the system has a non-null long-term
steady state (point B, Fig. 2).

(B.4) rp0 = 0 and UR(0) ≤ UU(0). Under these conditions, the
aquifer will be completely depleted.

5. Case C: commercial rangelands

“Overgrazing is another classical agent of land desertifica-
tion. The result is a decrease of the vegetation density/. . ./.
If the slope is steep the resulting erosion processes appear”
(Ministry for the Environment, 2003, p. 27). The incentives
for livestock established by the CAP, especially sheep, could
encourage farmers to overload their rangelands supplement-
ing the animals with feed. This problem affects or could
affect extensive areas of the Iberian Peninsula, including the
dehesa, a savannah-like formation of permanent grasslands
with disperse tree cover, which has a high ecological and envi-
ronmental value.

5.1. Model equations

A new set of assumptions can be used to specify the equations
outlined in Section 2 for the present case.

Eqs. (1C) and (2C)—In this case, the consumption units U
should properly be the number of livestock herds ranging in
an open access communal area, each herd owned by a single
farmer. However, we will simplify this illustrative application
by considering only what occurs in one hectare into such com-
mon area. This means that the dynamics of U will be ignored
in the following and also that the subindex U here refers to
one hectare.

Eq. (3C)—The per hectare production function is

QU = qpk KU (5.1)
The capital KU is now the livestock numbers on the mod-
elled hectare. It is a commercial single-species herd composed
of breeding females with constant average physiological states
and nutritional requirements. The hectare is covered by grass
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which is grazed by livestock at will; grass is therefore the nat-
ural resource R in case C. However, the farmers add what
supplementary feed is required to assure that both the produc-
tive and reproductive parameters of breeding animals remain
optimal and constant. In this way, the unitary production per
female qpk can be considered constant. There is no limiting
factor directly affecting livestock production.

Eq. (4C)—For simplicity’s sake, supplementary feed only
aims to satisfy the females’ energy needs (i.e. protein and vol-
ume requirements are ignored). In this way, the per hectare
variable cost function is

c(KU, RU)
{(

spr
cec

)
max[0, uen−(f (R)gec)]+ouc

}
KU = cK(R)KU

(5.2)

where spr is the price of supplementary feed; cec is the energy
content of concentrate; uen is the energy requirements per
animal; f(·) is the livestock functional response (i.e. grass con-
sumption per animal), gec is the energy content of grass and
ouc are other costs per breeding animal. The max(·) function
assures that the minimum cost of the supplementary feed is
zero. This will be achieved when grass satisfies all the animals’
energy requirements (i.e. f(R) gec ≥ uen).

The functional response is given by

f (R) = xca
[

1 − exp
(

− R

frf

)]
(5.3)

where xca is the maximum consumption per animal; R is the
quantity of grass in the hectare and frf is a form parameter
inversely related to animal intake efficiency in situations of
low grass density. Note that total demand for grass in the
modelled hectare is RU = f(R) KU.

The function c(KU, RU) can be expressed as cK(R) KU, where
cK(R) is the cost per breeding female which depends on the
available quantity of grass. Therefore, the profit per hectare is

PU = prq QU − cK(R)KU − fcu = [rpk − cK(R)]KU − fcu (5.4)

where rpk = prq qpk is the return per breeding female.
Eq. (5C)—It is easy to check that, in the present case, Eq.

(2.5) results in

dKU

dt
=

{[
rpk

cK(R)

]srk

− 1

}
KU

ubl
(5.5)

ubl is the useful breeding life of females. Note that this
dynamic equation expresses a particular form of the well-
known Hardin’s Tragedy of the Commons (Hardin, 1968): if
there are any positive margin of profit per breeding female
every farmer will be prompted to increase his/her herds
because if he or she would not do, another one will do.

Eq. (6C)—As explained before, the demand for grass in the
hectare is RU = f(R)KU, which rules out any partial adjustment
scheme.

Eq. (7C)—The grass on which the livestock herd feeds is

composed by a single perennial specie. Under this assump-
tion and taking into account invariable average weather
conditions, primary production of grass can be satisfactorily
represented by means of the logistic function (Noy-Meir, 1975,
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978). However, it is considered that both the intrinsic growth
ate and the carrying capacity of grass are negatively affected
y a significant reduction of the soil volume. On the other
and, the grass decay rate is proportional to its stock. There-

ore, Eq. (2.7) results in

dR

dt
= grx ms(S)R

(
1 − R

ccx ms(S)

)
− gdr R − f (R)KU (5.6)

here grx is the maximum intrinsic growth rate of grass; ccx
s the maximum carrying capacity, gdr is the grass decay rate
nd

s(S) = 1 − exp

[
−max(0, S − smn)

gsf

]
(5.7)

In this multiplier, smn is the minimum volume of soil
eeded for grass growth and gsf is a form parameter. Note
hat for a large volume of soil, ms(S) = 1 and grass productivity
s unaffected. On the other hand, for small volumes of soil,
s(S) < 1 and grass productivity falls.

Eq. (8C)—The rate of variation of the soil volume is given
y an equation similar to Eq. (3.5), where crop production QU

s now replaced by grass quantity R:

dS

dt
= bwr − lch − bse exp

(
− R

sef

)
(5.8)

It has been assumed, for simplicity’s sake, that the effects
f the livestock herd on the soil erosion and organic matter
ates are both negligible.

.2. Stability conditions—indicators of desertification
isk

he isocline of the livestock numbers (dKU/dt = 0) is

KU = −frf ln
(

1 + rpk cec − spr uen − ouc cec
spr xca gec

)
(5.9)

For this quantity of grass in the hectare, which only
epends on parameter values, the farmers end their wish of
rowing up their herds. It implies getting a negative profit,
ssuming that the fixed cost fcu had to be financed anyway,
ut this is actually one of the meanings of the Hardin’s tragedy

n this particular case.
The soil isocline (dS/dt = 0) is

S = −sef ln
(

bwr − lch
bse

)
(5.10)

If R < RS, erosion is greater than soil formation and, there-
ore, the final soil equilibrium is zero. If R > RS, erosion is minor
han soil formation and soil would grow indefinitely.

Finally, it can be checked that the grass isocline (dR/dt = 0)
esults in
KR
U(R, S) =
max{0, [grx ms(S) − gdr]R(1 − (R/ccx[ms(S) − (gdr/grx)]))}

xca[1 − exp(−R/frf)]
(5.11)
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Fig. 3 shows the general form of this isocline. This has been
sectioned by two planes, one for a high quantity of soil, such
that ms(S) ≈ 1, and another for a lesser amount of soil, such
that ms(S) < 1.

Three aspects of the grass isocline or, more specifically, of
the isocline sections for given quantities of soil deserve a spe-
cial mention (demonstrations of RI.2 and RI.3 can be seen in
Martı́nez Valderrama, 2005, Appendix III):

(RI.1) For any large quantity of soil (ms(S) ≈ 1, Fig. 3), the grass
isocline section can always be considered the same.

(RI.2) A significant decrease in the volume of soil leads to
a decrease in size and a shift to the left of the actual
section of the grass isocline.

(RI.3) Let RM(S) be the quantity of grass corresponding to the
maximum of the actual section of KR

U(R, S) for a given
value of S. The maximum value of RM(S) is RM(∞) which
is below the maximum of the section mentioned in RI.1.
In accordance with RI.2, the positive (non-zero) values of
RM(S) fall or tend to fall as the volume of soil S decreases.
It is not easy to express RM(S) mathematically, but its
numerical value for any special case could be calculated
by numerical iterations.

The equilibrium conditions in case C are described at
length in Ibáñez et al. (2007) and Martı́nez Valderrama (2005).
Only the main conclusions will be highlighted here.

5.2.1. Equilibrium in case C without livestock
First, it is worth considering that KU = 0. With this, the grass
isocline becomes:

RR(S) = ccx ∗ max
{

0,

[
ms(S) −

(
gdr
grx

)]}
(5.12)

Then, if the volume of soil is high (ms(S) = 1), the equilibrium
value of grass is constant:

RR(∞) = ccx
[

1 −
(

gdr
grx

)]
(5.13)

Both the function RR(S) and the constant RR(∞) are shown
in Fig. 3.

On the other hand, given that the soil isocline is indepen-
dent of livestock numbers, it is still expressed by R = RS (Eq.
(5.10)).

The two likely combinations that can be established
between the isoclines of the grass–soil subsystem without
livestock are the result of placing RS on both sides of RR(∞).
Fig. 4 shows the two possibilities, as well as the subsystem
trajectories for each region of the (S, R) phase plane.

The conclusion is that if the corresponding parametric
values were such that the condition RR(∞) < RS held for the iso-
lated grass–soil subsystem, or, alternatively, if the subsystem
is or use to be (e.g., due to frequent and persistent droughts)
at any point to the left of the separatrix represented in Fig. 4A,

long-term desertification (i.e. loss of all grass and soil) would
take place irrespective of whether or not there is any live-
stock. Under these circumstances, the presence of livestock
would speed up the process of desertification. Overgraz-
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large
Fig. 3 – Grass isocline in case C with two sections, one for a
of soil, ms(S) < 1.

ing should, nevertheless, not be established as the cause of
desertification.

5.2.2. Equilibrium in case C with livestock
The analysis is confined to the following initial conditions,
which, although implying some loss of generality, are par-
ticularly realistic and interesting in the case with which we
are concerned: (i) at t = 0, an initial livestock number Ki

U > 0 is
entered into a grass–soil subsystem for which the condition
RS < RR(∞) holds; (ii) the original quantity of grass is RR(∞), cor-
responding with its stationary equilibrium without livestock
(Eq. (5.13)); and (iii) the initial livestock number Ki

U is moderate
and reasonable in ecological terms.
Hypotheses (i) and (ii) imply that, initially, ms(S) = 1 and
the volume of soil increases. With these two hypotheses, as
discussed earlier, the grass–soil subsystem considered in the
analysis would certainly not degrade on its own if there were

Fig. 4 – Long-term equilibriums and grass and soil trajectories w
equilibrium.
quantity of soil, ms(S) ≈ 1, and another for a small quantity

no Ki
U. Accordingly, in those cases where the final equilibrium

in the presence of livestock turns out to be desertification,
we will be able to state that its cause is overgrazing. On the
other hand, any area of grass can evidently be stripped in a
short time if it is grazed by a disproportionate livestock herd;
hypothesis (iii) serves to rule out this possibility from initial
values.

The system’s possible behaviours under the mentioned ini-
tial conditions derive from combining the relative positions of
the quantities of grass RKU (Eq. (5.9)), RS (Eq. (5.10)) and RM(∞)
(feature RI.3 of the grass isocline). Ignoring the very unlikely
situations in which two or all three of these quantities could

be equal, the following three basic criteria can be established
to evaluate the risk of desertification due to overgrazing in
the modelled system (Ibáñez et al., 2007; Martı́nez Valderrama,
2005):

ithout livestock (�) stable equilibrium and (©) unstable
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C.1) RKU > RS and RKU > RM(∞). The risk of desertification is
negligible.

C.2) RKU < RS. The system will desertify in the long term.
C.3) RS < RKU < RM(∞). The system runs a serious risk of deser-

tification. In any case, if its long-term behaviour were to
be sustainable, the system would be highly unstable.

. Discussion

Ecological economics is a transdisciplinary effort to link the
atural and social sciences broadly, and especially ecology
nd economics” (Costanza, 1996). In this paper this inten-
ion becomes reality in a set of eight equations that relates
atural resources dynamics with processes founded on eco-
omic decisions. What is more, the isocline’s analysis has
een used to catch the economic weight on equilibrium states,
idening previous works that brilliantly carried with the eco-

ogical dimension of the involved systems (Noy-Meir, 1975,
978; Thornes, 1990). It is not easy to currently find in the eco-
ogical modelling literature papers dealing with a holistic point
f view about the relations between ecology and economics

n a conceptual or theoretical basis. It is easy to find models
hich include matters of different disciplines, but these are

requently detailed and big process-based models. The model
resented here tries to help in understanding the essence
f the overall ecological and economic processes involved in
esertification. For this, an effort has been made to select the
ost important relations, so ignoring a large amount of detail.

his tries to reinforce the pedagogical side of models, a func-
ion which should always play a complementary role to its
mportant practical or applied side.

This paper is concerned with exploring an alternative
pproach for assessing the risk of desertification in threatened
reas. The procedure focuses on structurally driven desertifi-
ation, meaning for that desertification which appears as a
ossible long-term state in human–resource systems evolv-

ng under constant average climatic and economic scenarios,
.e. desertification not specifically caused by changes in any of
he senses reviewed by De Angelis and Waterhouse (1987). The
rocedure relies on a generic system dynamics model that can
e applied to different desertification syndromes. For all the
pplications, interest focuses on finding all the possible long-
erm final states of the system and on defining the conditions
hat mark out sustainability and long-term desertification by

eans of specific parameter relations.
The system has been applied to three typified desertifica-

ion syndromes in Spain: (A) rainfed crops in areas with high
oil erosion risk; (B) irrigated intensive agricultural systems
hich could cause processes like aquifer overexploitation or

oil salinization; and (C) commercial rangelands threatened by
vergrazing. Each application has used highly accepted partial
odels in order to increase the reliability of the results.
In case A, assuming that no measures are taken to mitigate

rosion, long-term sustainability is constrained in practice to
he existence of a given high initial quantity of soil in areas

here average soil formation is greater than average mini-
um soil erosion. In this way, rather than determining an

lternative state for this kind of systems, economic parame-
ers would establish the total extension of land affected by the
3 ( 2 0 0 8 ) 180–190 189

final state. For example, very high initial profits per hectare can
cause the respective crop to quickly colonize all the suitable
area long before losses of productivity due to erosion become
significant. In such a case, if the final state is desertification,
it could affect the total area.

On the contrary, in cases B and C, crop or livestock pro-
duction profitability and technology are the only factors
determining the thresholds between sustainability and long-
term desertification given a definite stock of water with an
average constant renewal rate in case B and given a rangeland
with specific grass and livestock species farmed on a particu-
lar soil type with an average constant slope and under average
constant weather conditions in case C.

Both cases show that high profit scenarios are able to
determine final states of desertification for a human–resource
system seeking short-term profit maximization in spite of the
assumption of constant average environmental conditions.

This could actually be the case of some communal
dehesas in south-western Spain. The measures that define
thresholds in case C have been estimated for an ideal but
likely instance of one such rangeland with the following
results: RKU = 0.135, RS = 0.858, and RM(∞) = 0.932 for cattle and
RKU = 0.372, RS = 0.858, and RM(∞) = 0.99 for sheep (Ibáñez et al.,
2007; Martı́nez Valderrama, 2005). Therefore, both cases are
subject to the critical condition RKU < RS. Moreover, there is a
significant distance separating RKU from the other two refer-
ence quantities, making it unlikely that parameter variability
within a normal range could alter expectations.

Is in the aim of this paper to point out that this kind of
results of the explained procedure alerts to a serious risk of
desertification for the systems examined and of the need to
implement specific monitoring and mitigation programmes.
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